Dense segmentation-aware descriptors
Dense Image Correspondences for Computer Vision, Page: 83-107
2015
- 1Citations
- 36Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Dense descriptors are becoming increasingly popular in a host of tasks, such as dense image correspondence, bag-of-words image classification, and label transfer. However, the extraction of descriptors on generic image points, rather than selecting geometric features, requires rethinking how to achieve invariance to nuisance parameters. In this work we pursue invariance to occlusions and background changes by introducing segmentation information within dense feature construction. The core idea is to use the segmentation cues to downplay the features coming from image areas that are unlikely to belong to the same region as the feature point.We show how to integrate this idea with dense SIFT, as well as with the dense scale- and rotation-invariant descriptor (SID). We thereby deliver dense descriptors that are invariant to background changes, rotation, and/or scaling. We explore the merit of our technique in conjunction with large displacement motion estimation and wide-baseline stereo, and demonstrate that exploiting segmentation information yields clear improvements.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84956735358&origin=inward; http://dx.doi.org/10.1007/978-3-319-23048-1_5; https://link.springer.com/10.1007/978-3-319-23048-1_5; https://dx.doi.org/10.1007/978-3-319-23048-1_5; https://link.springer.com/chapter/10.1007/978-3-319-23048-1_5
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know