An ant colony-based matheuristic approach for solving a class of vehicle routing problems
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 9335, Page: 105-119
2015
- 4Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
We propose a matheuristic approach to solve several types of vehicle routing problems (VRP). In the VRP, a fleet of capacitated vehicles visits a set of customers exactly once to satisfy their demands while obeying problem specific characteristics and constraints such as homogeneous or heterogeneous fleet, customer service time windows, single or multiple depots. The proposed matheuristic is based on an ant colony optimization (ACO) algorithm which constructs good feasible solutions. The routes obtained in the ACO procedure are accumulated in a pool as columns which are then fed to an integer programming (IP) optimizer that solves the set-partitioning (-covering) formulation of the particular VRP. The (near-)optimal solution found by the solver is used to reinforce the pheromone trails in ACO. This feedback mechanism between the ACO and IP procedures helps the matheuristic better converge to high quality solutions. We test the performance of the proposed matheuristic on different VRP variants using well-known benchmark instances from the literature. Our computational experiments reveal competitive results: we report six new best solutions and meet the best-known solution in 120 instances out of 193.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84950992551&origin=inward; http://dx.doi.org/10.1007/978-3-319-24264-4_8; http://link.springer.com/10.1007/978-3-319-24264-4_8; http://link.springer.com/content/pdf/10.1007/978-3-319-24264-4_8; https://dx.doi.org/10.1007/978-3-319-24264-4_8; https://link.springer.com/chapter/10.1007/978-3-319-24264-4_8
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know