High-throughput genetics strategies for identifying new components of lipid metabolism in the green alga Chlamydomonas reinhardtii
Subcellular Biochemistry, ISSN: 0306-0225, Vol: 86, Page: 223-247
2016
- 6Citations
- 15Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Microalgal lipid metabolism is of broad interest because microalgae accumulate large amounts of triacylglycerols (TAGs) that can be used for biodiesel production (Durrett et al Plant J 54(4):593–607, 2008; Hu et al Plant J 54(4):621–639, 2008). Additionally, green algae are close relatives of land plants and serve as models to understand conserved lipid metabolism pathways in the green lineage. The green alga Chlamydomonas reinhardtii (Chlamydomonas hereafter) is a powerful model organism for understanding algal lipid metabolism. Various methods have been used to screen Chlamydomonas mutants for lipid amount or composition, and for identification of the mutated loci in mutants of interest. In this chapter, we summarize the advantages and caveats for each of these methods with a focus on screens for mutants with perturbed TAG content. We also discuss technical opportunities and new tools that are becoming available for screens of mutants altered in TAG content or perturbed in other processes in Chlamydomonas.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84962448942&origin=inward; http://dx.doi.org/10.1007/978-3-319-25979-6_10; http://www.ncbi.nlm.nih.gov/pubmed/27023238; http://link.springer.com/10.1007/978-3-319-25979-6_10; https://dx.doi.org/10.1007/978-3-319-25979-6_10; https://link.springer.com/chapter/10.1007/978-3-319-25979-6_10
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know