Interaction-based aggregation of mRNA and miRNA expression profiles to differentiate myelodysplastic syndrome
Communications in Computer and Information Science, ISSN: 1865-0929, Vol: 511, Page: 165-180
2015
- 1Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
In this work we integrate conventional mRNA expression profiles with miRNA expressions using the knowledge of their validated or predicted interactions in order to improve class prediction in genetically determined diseases. The raw mRNA and miRNA expression features become enriched or replaced by new aggregated features that model the mRNA-miRNA interaction. The proposed subtractive integration method is directly motivated by the inhibition/degradation models of gene expression regulation. The method aggregates mRNA and miRNA expressions by subtracting a proportion of miRNA expression values from their respective target mRNAs. Further, its modification based on singular value decomposition that enables different subtractive weights for different miRNAs is introduced. Both the methods are used to model the outcome or development of myelodysplastic syndrome, a blood cell production disease often progressing to leukemia. The reached results demonstrate that the integration improves classification performance when dealing with mRNA and miRNA features of comparable significance. The proposed methods are available as a part of the web tool miXGENE.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84955240535&origin=inward; http://dx.doi.org/10.1007/978-3-319-26129-4_11; http://link.springer.com/10.1007/978-3-319-26129-4_11; http://link.springer.com/content/pdf/10.1007/978-3-319-26129-4_11; https://dx.doi.org/10.1007/978-3-319-26129-4_11; https://link.springer.com/chapter/10.1007/978-3-319-26129-4_11
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know