Inorganic polyphosphate in blood coagulation
Inorganic Polyphosphates in Eukaryotic Cells, Page: 159-176
2016
- 2Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Polyphosphate (polyP) was recently discovered to be stored in a subset of the secretory granules of human platelets (the blood cell that supports formation of clots) and to be secreted upon activation of these cells. It is also present in other human cell types and is present in infectious microorganisms. Work from our laboratory and others has now shown that polyphosphate is a novel, potent modulator of blood clotting that likely plays roles in hemostasis, thrombosis, infl ammation, and the host response to pathogens. Polyphosphate acts at multiple points in the coagulation cascade, providing a template for initiation of the contact pathway of clotting, enhancing the activation of factor V (a critical cofactor in clotting whose accelerated activation results in an earlier thrombin burst), and markedly enhancing the rate of activation of factor XI by thrombin (resulting in marked amplifi cation of thrombin generation). Polyphosphate also acts on the formation and degradation of fi brin by becoming incorporated into polymerizing fi brin fi brils (rendering them thicker and obscuring the binding sites for fi brinolytic proteins, which in turn delays clot degradation). Therapeutic agents targeting polyphosphate may have the potential to limit thrombosis with fewer hemorrhagic complications than conventional anticoagulant drugs that target essential proteases of the blood-clotting cascade.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85009663373&origin=inward; http://dx.doi.org/10.1007/978-3-319-41073-9_11; http://link.springer.com/10.1007/978-3-319-41073-9_11; https://dx.doi.org/10.1007/978-3-319-41073-9_11; https://link.springer.com/chapter/10.1007/978-3-319-41073-9_11
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know