Early prediction of severe maternal morbidity using machine learning techniques
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 10022 LNAI, Page: 259-270
2016
- 10Citations
- 40Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Severe Maternal Morbidity is a public health issue. It may occur during pregnancy, delivery, or puerperium due to conditions (hypertensive disorders, hemorrhages, infections and others) that put in risk the women’s or baby’s life. These conditions are really difficult to detect at an early stage. In response to the above, this work proposes using several machine learning techniques, which are considered most relevant in a bio-medical setting, in order to predict the risk level for Severe Maternal Morbidity in patients during pregnancy. The population studied correspond to pregnant women receiving prenatal care and final attention at E.S.E Clínica de Maternidad Rafael Calvo in Cartagena, Colombia. This paper presents the preliminary results of an ongoing project, as well as methods and materials considered for the construction of the learning models.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84994065492&origin=inward; http://dx.doi.org/10.1007/978-3-319-47955-2_22; https://link.springer.com/10.1007/978-3-319-47955-2_22; https://dx.doi.org/10.1007/978-3-319-47955-2_22; https://link.springer.com/chapter/10.1007/978-3-319-47955-2_22
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know