Concentration-encoded molecular communication in nanonetworks. Part 1: Fundamentals, issues, and challenges
Modeling and Optimization in Science and Technologies, ISSN: 2196-7334, Vol: 9, Page: 3-34
2017
- 1Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Concentration-encoded molecular communication (CEMC) is a technique in molecular communication (MC) paradigm where information is encoded into the amplitude of the transmission rate of molecules at the transmitting nanomachine (TN) and, correspondingly, the transmitted information is decoded by observing the concentration of information molecules at the receiving nanomachine (RN). In this chapter, we particularly focus on the fundamentals, issues, and challenges of CEMC system towards the realization of molecular nanonetworks. CEMC is a simple encoding approach in MC using a single type of information molecules only and without having to alter the internal structure of molecules, or use distinct molecules. Despite its simplicity, CEMC suffers from several challenges that need to be addressed in detail. Although there exists some literature on MC and nanonetworks in general, in this chapter, we particularly focus on CEMC system and provide a comprehensive overview of the principles, prospects, issues, and challenges of CEMC system.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85015401347&origin=inward; http://dx.doi.org/10.1007/978-3-319-50688-3_1; http://link.springer.com/10.1007/978-3-319-50688-3_1; https://dx.doi.org/10.1007/978-3-319-50688-3_1; https://link.springer.com/chapter/10.1007/978-3-319-50688-3_1
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know