A multiple kernel learning framework to investigate the relationship between ventricular fibrillation and first myocardial infarction
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 10263 LNCS, Page: 161-171
2017
- 2Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Myocardial infarction results in changes in the structure and tissue deformation of the ventricles. In some cases, the development of the disease may trigger an arrhythmic event, which is a major cause of death within the first twenty four hours after the infarction. Advanced analysis methods are increasingly used in order to discover particular characteristics of the myocardial infarction development that lead to the occurrence of arrhythmias. However, such methods usually consider only a single feature or combine separate analyses from multiple features in the analytical process. In an attempt to address this, we propose to use cardiac magnetic resonance imaging to extract data on the shape of the ventricles and volume and location of the infarct zone, and to combine them within one analytical model through a multiple kernel learning framework. The proposed method was applied to a cohort of 46 myocardial infarction patients. The location, rather than the volume, of the infarct region was found to be correlated with arrhythmic events and the proposed combination of kernels yielded excellent accuracy (100%) in distinguishing between patients that did and did not present at the hospital with ventricular fibrillation.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85020473723&origin=inward; http://dx.doi.org/10.1007/978-3-319-59448-4_16; http://link.springer.com/10.1007/978-3-319-59448-4_16; https://dx.doi.org/10.1007/978-3-319-59448-4_16; https://link.springer.com/chapter/10.1007/978-3-319-59448-4_16
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know