Effect of hyper-plasticizer additive rates on the properties of polypropylene fibre tempered concretes
Lecture Notes in Civil Engineering, ISSN: 2366-2565, Vol: 6, Page: 309-320
2018
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Book Chapter Description
In this study, effect of different rates of hyper-plasticizer additives on the physical and mechanical properties of polypropylene fibre tempered concretes was investigated. The factors of slump and compaction, which are fresh concrete properties, were also examined. In the study, different types and rates of polypropylene fibres were used. Polypropylene fibres and hyper-plasticizer additives were used in three different rates in the mixture. As polypropylene fibre amount increased in the mixture, hyper-plasticizer additive amount also increased. Fresh concrete slump values were measured between 15 and 19 cm. Impaction factor value was between 0.89 and 0.99. In some mixtures, it was seen that the relation between the slump value and impaction value was disrupted. Abrasion and water absorption values, which were physical properties of the hardened concrete, were calculated. In abrasion tests, it was seen that concretes with C, D and E fibres were eroded less. Polypropylene fibre additive increased the water absorption value of concrete. Its effect on splitting-tensile strength, which was a hardened concrete property, was examined. In splitting-tensile strength experiment, 15 × 30 cm cylinder samples were used. It was seen that the polypropylene fibres increased the splitting-tensile resistance of the concrete at the rate of 80% compared to the polypropylene fibre additive free mixture. Also, deformation meters were placed on the sample in splitting-tensile resistance. Horizontal deformations of samples were measured at the moment of breaking. While horizontal deformation values increased in 7 day samples compared to propylene fibre additive-free mixture, they decreased in 28-day samples. 7 day horizontal deformation values of the samples were measured to be higher than the 28 day horizontal deformation values. This situation can be explained with brittleness of the concrete at the end of 28 days as it gains resistance.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85060233395&origin=inward; http://dx.doi.org/10.1007/978-3-319-63709-9_24; http://link.springer.com/10.1007/978-3-319-63709-9_24; http://link.springer.com/content/pdf/10.1007/978-3-319-63709-9_24; https://dx.doi.org/10.1007/978-3-319-63709-9_24; https://link.springer.com/chapter/10.1007/978-3-319-63709-9_24
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know