Nonlinear metamaterials and metadevices
Springer Series in Materials Science, ISSN: 0933-033X, Vol: 262, Page: 173-200
2018
- 18Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures18
- Readers18
- 18
Book Chapter Description
Metamaterials have brought unique functionalities by allowing the engineering of the material parameters at the level of their elementary units (meta-atoms) to creating functional metadevices. One of the important developments in this field is the demonstration of many of the nonlinear effects known in nonlinear physics and nonlinear optics such as nonlinear self-action, parametric interactions, and frequency conversion, which will boost the development of various methods for achieving tunable, switchable, nonlinear, and sensing functionalities of metamaterials. The study of nonlinear effects in artificial media and engineering the nonlinear response of such media are crucially important for this progress. In the context of photonic integration, for instance, metamaterials promise pathways for light that are impossible in normal materials and offer new freedom in exploiting nonlinear processes. By incorporating nonlinear and tunable metamaterials, it will be possible to create functional metamaterials that display sensitive tuning and novel or enhanced nonlinear behavior. These materials will ultimately provide the basis of a revolutionary platform for optical processing. This chapter will give a brief review on the update progress of nonlinear metamaterials and inspired functional metadevices.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85029597162&origin=inward; http://dx.doi.org/10.1007/978-3-319-66044-8_9; http://link.springer.com/10.1007/978-3-319-66044-8_9; http://link.springer.com/content/pdf/10.1007/978-3-319-66044-8_9; https://dx.doi.org/10.1007/978-3-319-66044-8_9; https://link.springer.com/chapter/10.1007/978-3-319-66044-8_9
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know