Is a space interval a set of infinite points? a very old question
Studies in Applied Philosophy, Epistemology and Rational Ethics, ISSN: 2192-6263, Vol: 39, Page: 195-205
2017
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
In this paper we will address the question whether a space interval is a set of infinite points. It is a very old problem, but despite its age it is still a live issue, and one we have to confront. We will analyze some topics regarding this question using the most influential objections against it, i.e. The Large and the Small paradox (in particular its Small Horn). We will consider classical contemporary reformulations of the argument (Grünbaum in Philosophy of Science 19:280–306, 1952; Grünbaum in Modern science and Zeno’s paradoxes. Allen and Unwin, London, 1968) and the possible ‘solutions’ to it. Finally, we will propose a new formulation of the paradox and analyze its consequences. In particular, we will bring further arguments supporting the standard thesis that it is possible that a segment of space is composed of a non-denumerable set of indivisible 0-length points.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85040862362&origin=inward; http://dx.doi.org/10.1007/978-3-319-66911-3_12; http://link.springer.com/10.1007/978-3-319-66911-3_12; https://dx.doi.org/10.1007/978-3-319-66911-3_12; https://link.springer.com/chapter/10.1007/978-3-319-66911-3_12
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know