Evolutionary Modularity Optimization Clustering of Neuronal Spike Trains
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 10637 LNCS, Page: 525-532
2017
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Conference Paper Description
We propose a method for automatic evolutionary clustering of multi neuronal spike trains on the basis of community detection in complex networks. We use a genetic algorithm for optimization to maximize the modularity for community partitioning and then automatically determine the number of clusters hidden in the multi neuronal spike trains. The number of clusters does not need to be specified in advance. Compared with the traditional graph partitioning method, the genetic evolutionary modularity optimization clustering algorithm can obtain the maximum value of modularity and, determine the number of communities. We evaluate the performance of this method on surrogate spike train datasets with ground truth. The results obtained showed improvement. We then apply this proposed method to raw real spike trains. We obtain a larger value for modularity and the results. This finding suggests that the proposed method can be used to detect the hidden firing pattern.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85035135458&origin=inward; http://dx.doi.org/10.1007/978-3-319-70093-9_55; https://link.springer.com/10.1007/978-3-319-70093-9_55; https://dx.doi.org/10.1007/978-3-319-70093-9_55; https://link.springer.com/chapter/10.1007/978-3-319-70093-9_55
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know