Other recurrent neural networks models
SpringerBriefs in Computer Science, ISSN: 2191-5776, Vol: 0, Issue: 9783319703374, Page: 31-39
2017
- 6Citations
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
In this chapter we review two additional types of Recurrent Neural Network, which present important differences with respect to the architectures described so far. More specifically, we introduce the nonlinear auto-regressive with eXogenous inputs (NARX) neural network and the Echo State Network. Both these networks have been largely employed in Short Term Load Forecast applications and they have been shown to be more effective than other methods based on statistical models. The main differences of NARX networks and Echo State Networks with respect to the other previously described models, are both in terms of their architecture and, in particular, in their training procedure. Indeed, both these architectures are designed in such a way that Back Propagation Through Time is not necessary. Specifically, in NARX the network output is replaced by the expected ground truth and this allows to train the network like a feedforward architecture. On the other hand, in a Echo State Network only the outermost linear layer is trained, usually by means of ridge regression. Due to these fundamental differences, some of the properties and training approaches discussed in the previous sections do not hold for the NARX and Echo State Network models and we reserved a separate chapter to review these models.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85044842587&origin=inward; http://dx.doi.org/10.1007/978-3-319-70338-1_4; http://link.springer.com/10.1007/978-3-319-70338-1_4; http://link.springer.com/content/pdf/10.1007/978-3-319-70338-1_4; https://dx.doi.org/10.1007/978-3-319-70338-1_4; https://link.springer.com/chapter/10.1007/978-3-319-70338-1_4
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know