Synchronization phenomena in coupled dynamical systems with hidden attractors
Studies in Systems, Decision and Control, ISSN: 2198-4190, Vol: 133, Page: 375-401
2018
- 9Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Recently, Leonov and Kuznetsov introduced a new class of nonlinear dynamical systems, which is called systems with hidden attractors, in contrary to the well-known class of systems with self-excited attractors. In this class, dynamical systems with infinite number of equilibrium points, with stable equilibria, or without equilibrium are classified. Since then, the study of chaotic systems with hidden attractors has become an attractive research topic because this new class of dynamical systems could play an important role not only in theoretical problems but also in engineering applications. In this direction, the proposed chapter presents the bidirectional and unidirectional coupling schemes between two identical dynamical chaotic systems with no-equilibrium points. As it is observed, when the value of the coupling coefficient is increased in both coupling schemes, the coupled systems undergo a transition from desynchronization mode to complete synchronization. Also, the simulation results reveal the richness of the coupled system’s dynamical behavior, especially in the bidirectional case, showing interesting nonlinear dynamics, with a transition between periodic, quasiperiodic and chaotic behavior as the coupling coefficient increases, as well as synchronization phenomena, such as complete and anti-phase synchronization. Various tools of nonlinear theory for the study of the proposed coupling method, such as bifurcation diagrams, phase portraits and Lyapunov exponents have been used.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85042689582&origin=inward; http://dx.doi.org/10.1007/978-3-319-71243-7_17; http://link.springer.com/10.1007/978-3-319-71243-7_17; https://dx.doi.org/10.1007/978-3-319-71243-7_17; https://link.springer.com/chapter/10.1007/978-3-319-71243-7_17
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know