Gauss-Newton Representation Based Algorithm for Magnetic Resonance Brain Image Classification
Advances in Intelligent Systems and Computing, ISSN: 2194-5357, Vol: 736, Page: 294-304
2018
- 1Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Brain tumor is a harmful disease worldwide. Every year, a majority of adults as well as children dies due to brain tumor. Early detection of the tumor can enhance the survival rate. Many brain image classification schemes are reported in the literature for early detection of tumors. Thus, it has become a challenging problem in the field of medical image analysis. In this paper, a novel hybrid method is proposed that uses the Gauss-Newton representation based algorithm (GNRBA) with feature selection approach. The proposed method is threefold. Firstly, discrete wavelet transform (DWT) is used as a pre-processing step to extract the features from the brain images. Secondly, principal component analysis (PCA) is used to address the dimensionality problem. Finally, the extracted features in the lower dimensional space are utilized by GNRBA for classification. To show the robustness of the proposed method, real human brain magnetic resonance (MR) images are used to experiment. It is witnessed from the results that the performance of the proposed method is superior as compared to the existing brain image classification methods.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85044456125&origin=inward; http://dx.doi.org/10.1007/978-3-319-76348-4_29; http://link.springer.com/10.1007/978-3-319-76348-4_29; http://link.springer.com/content/pdf/10.1007/978-3-319-76348-4_29; https://dx.doi.org/10.1007/978-3-319-76348-4_29; https://link.springer.com/chapter/10.1007/978-3-319-76348-4_29
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know