Water motion and sugar translocation in leaves
Plant Biomechanics: From Structure to Function at Multiple Scales, Page: 351-374
2018
- 2Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
We give an overview of the current understanding of the coupled water- and sugar flows in plants with special emphasis on the leaves. We introduce the Münch mechanism and discuss the particularities of osmotically driven flow in the phloem and the consequences for the allometry of the vasculature. This is first done in the context of the entire tree, where we discuss the optimum radius for the phloem tubes, and later for a single needle, where we give a more detailed solution of the osmotic flow profile, allowing us to understand the constraints on needle sizes. We then discuss recent results from microscopy of cross sections along the midvein of a birch leaf, allowing us to measure how the number and radius of the sieve elements depend on the distance from the petiole and compare this to the available area and the minor vein endings in the entire leaf. We finally discuss the pre-phloem water flow in the leaf, i.e. the coupled water/sugar transport from the mesophyll via the bundle sheath into the sieve tubes. We review the distinct sugar loading mechanisms with special emphasis on active symplasmic loading ('polymer trapping'), where one needs to compute water and sugar flow through extremely narrow channels.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85053583791&origin=inward; http://dx.doi.org/10.1007/978-3-319-79099-2_16; http://link.springer.com/10.1007/978-3-319-79099-2_16; http://link.springer.com/content/pdf/10.1007/978-3-319-79099-2_16; https://dx.doi.org/10.1007/978-3-319-79099-2_16; https://link.springer.com/chapter/10.1007/978-3-319-79099-2_16
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know