RNA interference: A promising approach for crop improvement
Biotechnologies of Crop Improvement, Volume 2: Transgenic Approaches, Page: 41-65
2018
- 17Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
RNA interference (RNAi) is a naturally occurring biological process that regulates plant growth and development, defense against pathogens, and environmental stresses. It is a sequence-specific homology-based silencing mechanism in which the function of a gene is interfered or suppressed. Small interfering RNAs (siRNAs) and microRNAs (miRNAs) are produced inside the plant cell through the activation of RNAi machinery, which downregulates the expression of the target genes at transcriptional and translational levels. RNAi is more specific, precise in its action, and considered as a potential technology for functional genomics studies. In the last 15 years, it has emerged as a scientific breakthrough for crop improvement without affecting other agronomic traits. It has also been employed as a novel method in understanding the basic phenomenon of plant defense and metabolism. Several desirable traits have been improved in the crop varieties through RNAi, which include crop protection against biotic and abiotic stresses, enhancement of nutritional value, alteration in plant architecture for better adaptation to environmental conditions, overexpression or removal of secondary metabolites, enhancement of shelf life of fruits and vegetables, generation of male sterile lines, and development of seedless fruits. In this book chapter, we have discussed RNAi and its applications in crop improvement.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85063809110&origin=inward; http://dx.doi.org/10.1007/978-3-319-90650-8_3; http://link.springer.com/10.1007/978-3-319-90650-8_3; https://dx.doi.org/10.1007/978-3-319-90650-8_3; https://link.springer.com/chapter/10.1007/978-3-319-90650-8_3
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know