Metallic Glasses
Springer Handbooks, ISSN: 2522-8706, Page: 617-643
2019
- 6Citations
- 54Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Many industrial applications require materials with remarkable and sometimes contradictory properties. Let us mention a few examples. In the field of biomaterials (dental implants), micromechanics (gears) or in the field of jewelry or watches (luxury watches), a need is felt very clearly: That of materials that are both hard, wear resistant, biocompatible, possess a high yield strength, while being deformable. However, such ‘‘ideal'' materials do not exist at present, and hence the numerous ongoing research being reported in this field. Polymers are easy to use and deformable but not mechanically resistant; ceramics are very hard but often brittle, metals can be deformable but they are, in this case, characterized by ordinary mechanical properties. It is well known that metallic glasses have a great potential for industrial applications. In general, metallic glasses possess high strength, high elastic limits, excellent corrosion resistance, and thermoplastic formability compared to crystalline materials. This combination of structural and functional properties makes them potential candidates for applications where the use of conventional materials has reached a limit of effectiveness. This chapter addresses the history of bulk metallic glasses, their thermal stability, and their most attractive properties. Some examples of industrial applications are given.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85075935199&origin=inward; http://dx.doi.org/10.1007/978-3-319-93728-1_18; http://link.springer.com/10.1007/978-3-319-93728-1_18; http://link.springer.com/content/pdf/10.1007/978-3-319-93728-1_18; https://dx.doi.org/10.1007/978-3-319-93728-1_18; https://link.springer.com/chapter/10.1007/978-3-319-93728-1_18
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know