Citation function classification based on ontologies and convolutional neural networks
Communications in Computer and Information Science, ISSN: 1865-0929, Vol: 870, Page: 105-115
2018
- 14Citations
- 19Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
In recent years, there has been significant growth in the use of citation to improve the methods of evaluating the quality of publications. To determine the quality of the publications, traditional methods such as impact factor depend only on the citation count. Recently, citation functions or purposes have gained attention to evaluate the quality of these methods. Citation function classification is defined as a way to find out the reasons behind quoting previous literature. Several approaches for citation function classification have been proposed to classify citation functions in scholarly publication. However, these approaches do not consider the author’s characteristics such as author’s information, neither the publication level. Those characteristics can be useful in the process of citation function classification. In addition, previous studies mainly used classical machine learning techniques such as support vector machine and neural networks with a number of manually created features. The manual feature representation is time-consuming and error prone. To address these problems, we propose a citation function classification model by combining ontologies with convolutional neural networks (CNN). In our model, ontologies were used to represent the author’s characteristics and the citations semantically. Then, we have incorporated this representation into a CNN model to classify citations into six functions. We have conducted experiments using public dataset and showed that the proposed approach achieves good performance compared with the existing techniques in terms of accuracy.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85051923934&origin=inward; http://dx.doi.org/10.1007/978-3-319-95522-3_10; https://link.springer.com/10.1007/978-3-319-95522-3_10; https://dx.doi.org/10.1007/978-3-319-95522-3_10; https://link.springer.com/chapter/10.1007/978-3-319-95522-3_10
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know