Training set similarity based parameter selection for statistical machine translation
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 10987 LNCS, Page: 63-71
2018
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Conference Paper Description
Log-linear model based statistical machine translation systems (SMT) are usually composed of multiple feature functions. Each feature function is assigned a weight as a model parameter. In this paper, we consider that different input source sentences may have discrepant needs for model parameters. To adapt the model to different inputs, we propose a model parameters selection method for log-linear model based SMT systems. The method is mainly based on the characteristics of different feature functions themselves without any assumption on unseen test sets. Experimental results on two language pairs (Zh-En and Ug-Zh) show that our method leads to the improvements up to 2.4 and 2.2 BLEU score respectively, and it also shows the good interpretability of our proposed method.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85050550097&origin=inward; http://dx.doi.org/10.1007/978-3-319-96890-2_6; https://link.springer.com/10.1007/978-3-319-96890-2_6; https://dx.doi.org/10.1007/978-3-319-96890-2_6; https://link.springer.com/chapter/10.1007/978-3-319-96890-2_6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know