Acyclic directed graphs to represent conditional independence models
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 0302-9743, Vol: 5590 LNAI, Page: 530-541
2009
- 5Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
In this paper we consider conditional independence models closed under graphoid properties. We investigate their representation by means of acyclic directed graphs (DAG). A new algorithm to build a DAG, given an ordering among random variables, is described and peculiarities and advantages of this approach are discussed. Finally, some properties ensuring the existence of perfect maps are provided. These conditions can be used to define a procedure able to find a perfect map for some classes of independence models. © 2009 Springer Berlin Heidelberg.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=69049118267&origin=inward; http://dx.doi.org/10.1007/978-3-642-02906-6_46; http://link.springer.com/10.1007/978-3-642-02906-6_46; https://dx.doi.org/10.1007/978-3-642-02906-6_46; https://link.springer.com/chapter/10.1007/978-3-642-02906-6_46
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know