Optimize first, buy later: Analyzing metrics to ramp-up very large knowledge bases
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 6496 LNCS, Issue: PART 1, Page: 486-501
2010
- 13Citations
- 27Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
As knowledge bases move into the landscape of larger ontologies and have terabytes of related data, we must work on optimizing the performance of our tools. We are easily tempted to buy bigger machines or to fill rooms with armies of little ones to address the scalability problem. Yet, careful analysis and evaluation of the characteristics of our data-using metrics-often leads to dramatic improvements in performance. Firstly, are current scalable systems scalable enough? We found that for large or deep ontologies (some as large as 500,000 classes) it is hard to say because benchmarks obscure the load-time costs for materialization. Therefore, to expose those costs, we have synthesized a set of more representative ontologies. Secondly, in designing for scalability, how do we manage knowledge over time? By optimizing for data distribution and ontology evolution, we have reduced the population time, including materialization, for the NCBO Resource Index, a knowledge base of 16.4 billion annotations linking 2.4 million terms from 200 ontologies to 3.5 million data elements, from one week to less than one hour for one of the large datasets on the same machine. © 2010 Springer-Verlag.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=78650856894&origin=inward; http://dx.doi.org/10.1007/978-3-642-17746-0_31; https://link.springer.com/10.1007/978-3-642-17746-0_31; https://dx.doi.org/10.1007/978-3-642-17746-0_31; https://link.springer.com/chapter/10.1007/978-3-642-17746-0_31
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know