PlumX Metrics
Embed PlumX Metrics

Analysis of an averaging operator for atomic-to-continuum coupling methods by the arlequin approach

Lecture Notes in Computational Science and Engineering, ISSN: 1439-7358, Vol: 82, Page: 369-400
2012
  • 5
    Citations
  • 0
    Usage
  • 10
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    5
    • Citation Indexes
      5
  • Captures
    10

Conference Paper Description

A new coupling term for blending particle and continuum models with the Arlequin framework is investigated in this work. The coupling term is based on an integral operator defined on the overlap region that matches the continuum and particle solutions in an average sense. The present exposition is essentially the continuation of a previous work (Bauman et al., On the application of the Arlequin method to the coupling of particle and continuum models, Computational Mechanics, 42, 511–530, 2008) in which coupling was performed in terms of an H -type norm. In that case, it was shown that the solution of the coupled problem was mesh-dependent or, said in another way, that the solution of the continuous coupled problem was not the intended solution. This new formulation is now consistent with the problem of interest and is virtually mesh-independent when considering a particle model consisting of a distribution of heterogeneous bonds. The mathematical properties of the formulation are studied for a one-dimensional model of harmonic springs, with varying stiffness parameters, coupled with a linear elastic bar, whose modulus is determined by classical homogenization. Numerical examples are presented for one-dimensional and two-dimensional model problems that illustrate the approximation properties of the new coupling term and the effect of mesh size.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know