Motion recognition in wearable sensor system using an ensemble artificial neuro-molecular system
Communications in Computer and Information Science, ISSN: 1865-0929, Vol: 212 CCIS, Page: 78-85
2011
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Conference Paper Description
This paper proposes an ensemble artificial neuro-molecular system for motion recognition for a wearable sensor system with 3-axis accelerometers. Human motions can be distinguished through classification algorithms for the wearable sensor system of two 3-axis accelerometers attached to both forearms. Raw data from the accelerometers are pre-processed and forwarded to the classification algorithm designed using the proposed ensemble artificial neuro-molecular(ANM) system. The ANM system is a kind of bio-inspired algorithm like neural network. It is composed of many artificial neurons that are linked together according to a specific network architecture. For comparison purpose, other algorithms such as artificial neuro-molecular system, artificial neural networks support vector machine, k-nearest neighbor algorithm and k-means clustering, are tested. In experiments, eight kinds of motions are randomly selected in a daily life to test the performance of the proposed system and to compare its performance with that of existing algorithms. © 2011 Springer-Verlag.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=80052810854&origin=inward; http://dx.doi.org/10.1007/978-3-642-23147-6_10; http://link.springer.com/10.1007/978-3-642-23147-6_10; http://link.springer.com/content/pdf/10.1007/978-3-642-23147-6_10; https://dx.doi.org/10.1007/978-3-642-23147-6_10; https://link.springer.com/chapter/10.1007/978-3-642-23147-6_10
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know