Activity discovery using compressed suffix trees
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 0302-9743, Vol: 6979 LNCS, Issue: PART 2, Page: 69-78
2011
- 1Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
The area of unsupervised activity categorization in computer vision is much less explored compared to the general practice of supervised learning of activity patterns. Recent works in the lines of activity "discovery" have proposed the use of probabilistic suffix trees (PST) and its variants which learn the activity models from temporally ordered sequences of object states. Such sequences often contain lots of object-state self-transitions resulting in a large number of PST nodes in the learned activity models. We propose an alternative method of mining these sequences by avoiding to learn the self-transitions while maintaining the useful statistical properties of the sequences thereby forming a "compressed suffix tree" (CST). We show that, on arbitrary sequences with significant self-transitions, the CST achieves a much lesser size as compared to the polynomial growth of the PST. We further propose a distance metric between the CSTs using which, the learned activity models are categorized using hierarchical agglomerative clustering. CSTs learned from object trajectories extracted from two data sets are clustered for experimental verification of activity discovery. © 2011 Springer-Verlag.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=80053019879&origin=inward; http://dx.doi.org/10.1007/978-3-642-24088-1_8; http://link.springer.com/10.1007/978-3-642-24088-1_8; https://dx.doi.org/10.1007/978-3-642-24088-1_8; https://link.springer.com/chapter/10.1007/978-3-642-24088-1_8
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know