A discretization algorithm of numerical attributes for digital library evaluation based on data mining technology
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 0302-9743, Vol: 7008 LNCS, Page: 70-76
2011
- 6Citations
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
We present here a discretization algorithm for numerical attributes of digital collections. In our research data mining technology is imported into digital library evaluation to provide a better decision-making support. But data prediction algorithms work not well based on the traditional discretization method during the data mining process. The reason is that numerical attributes of digital collections are complicated and not in the same scale of distribution distance. We study the characteristic of numerical attributes and put forward a discretization method based on the Z-score idea of mathematical statistics. This algorithm can reflect the dynamic semantic distance for different numerical attributes and significantly enhance the precision rate and recall rate of data prediction algorithms. Furthermore a 'nonlinear conditional relationship' among attributes of digital collections is discovered during the study of discretization algorithm and impacts the actual application result of traditional data mining algorithms. © 2011 Springer-Verlag.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=80455173444&origin=inward; http://dx.doi.org/10.1007/978-3-642-24826-9_12; http://link.springer.com/10.1007/978-3-642-24826-9_12; http://link.springer.com/content/pdf/10.1007/978-3-642-24826-9_12; https://dx.doi.org/10.1007/978-3-642-24826-9_12; https://link.springer.com/chapter/10.1007/978-3-642-24826-9_12
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know