Dynamic bayesian networks: A factored model of probabilistic dynamics
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 0302-9743, Vol: 7561 LNCS, Page: 17-25
2012
- 5Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
The modeling and analysis of probabilistic dynamical systems is becoming a central topic in the formal methods community. Usually, Markov chains of various kinds serve as the core mathematical formalism in these studies. However, in many of these settings, the probabilistic graphical model called dynamic Bayesian networks (DBNs) [4] can be amore appropriate model to work with. This is so since a DBN is often a factored and succinct representation of an underlying Markov chain. Our goal here is to describe DBNs from this standpoint. After introducing the basic formalism, we discuss inferencing algorithms for DBNs. We then consider a simple probabilistic temporal logic and the associated model checking problem for DBNs with a finite time horizon. Finally, we describe how DBNs can be used to study the behavior of biochemical networks. © 2012 Springer-Verlag.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84868253863&origin=inward; http://dx.doi.org/10.1007/978-3-642-33386-6_2; http://link.springer.com/10.1007/978-3-642-33386-6_2; http://link.springer.com/content/pdf/10.1007/978-3-642-33386-6_2; https://dx.doi.org/10.1007/978-3-642-33386-6_2; https://link.springer.com/chapter/10.1007/978-3-642-33386-6_2
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know