Deconfounding the effects of resting state activity on task activation detection in fMRI
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 0302-9743, Vol: 7509 LNCS, Page: 51-60
2012
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures11
- Readers11
- 11
Conference Paper Description
Inferring brain activation from functional magnetic resonance imaging (fMRI) data is greatly complicated by the presence of strong noise. Recent studies suggest that part of the noise in task fMRI data actually pertains to ongoing resting state (RS) brain activity. Due to the sporadic nature of RS temporal dynamics, pre-specifying temporal regressors to reduce the confounding effects of RS activity on task activation detection is far from trivial. In this paper, we propose a novel approach that exploits the intrinsic task-rest relationships in brain activity for addressing this challenging problem. With an approximate task activation pattern serving as a seed, we first infer areas in the brain that are intrinsically connected to this seed from RS-fMRI data. We then apply principal component analysis to extract the RS component within the task fMRI time courses of the identified intrinsically-connected brain areas. Using the learned RS modulations as confound regressors, we re-estimate the task activation pattern, and repeat this process until convergence. On real data, we show that removal of the estimated RS modulations from task fMRI data significantly improves activation detection. Our results thus provide further support for the presence of continual RS activity superimposed on task fMRI response. © 2012 Springer-Verlag.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84868221151&origin=inward; http://dx.doi.org/10.1007/978-3-642-33530-3_5; http://link.springer.com/10.1007/978-3-642-33530-3_5; http://www.springerlink.com/index/10.1007/978-3-642-33530-3_5; http://www.springerlink.com/index/pdf/10.1007/978-3-642-33530-3_5; https://dx.doi.org/10.1007/978-3-642-33530-3_5; https://link.springer.com/chapter/10.1007/978-3-642-33530-3_5
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know