Online crowdsource system supporting ground truth datasets creation
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 0302-9743, Vol: 7894 LNAI, Issue: PART 1, Page: 532-539
2013
- 8Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
This paper proposes a design of a system for creating image similarity datasets which are necessary for testing the quality of supervised ranking algorithms. In particular, the main goal is to facilitate the creation of similar images rankings for given a imaginary dataset. The system was designed in a manner that involves user feedback in the process of creating the rankings. In each iteration of ranking construction, the query image and twelve candidates are presented to the user, who is intended to select the most similar one. Moreover, in order to accelerate the method convergence the approach based on simulated annealing is adapted. It initially chooses the images randomly from a dataset and in the later stages the images with rank rate above zero are chosen with certain probability. © 2013 Springer-Verlag.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84884383922&origin=inward; http://dx.doi.org/10.1007/978-3-642-38658-9_48; http://link.springer.com/10.1007/978-3-642-38658-9_48; https://dx.doi.org/10.1007/978-3-642-38658-9_48; https://link.springer.com/chapter/10.1007/978-3-642-38658-9_48
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know