PlumX Metrics
Embed PlumX Metrics

Protecting anonymity in data-driven biomedical science

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN: 1611-3349, Vol: 8401, Page: 301-316
2014
  • 19
    Citations
  • 0
    Usage
  • 31
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    19
    • Citation Indexes
      19
  • Captures
    31

Book Chapter Description

With formidable recent improvements in data processing and information retrieval, knowledge discovery/data mining, business intelligence, content analytics and other upcoming empirical approaches have an enormous potential, particularly for the data intensive biomedical sciences. For results derived using empirical methods, the underlying data set should be made available, at least during the review process for the reviewers, to ensure the quality of the research done and to prevent fraud or errors and to enable the replication of studies. However, in particular in the medicine and the life sciences, this leads to a discrepancy, as the disclosure of research data raises considerable privacy concerns, as researchers have of course the full responsibility to protect their (volunteer) subjects, hence must adhere to respective ethical policies. One solution for this problem lies in the protection of sensitive information in medical data sets by applying appropriate anonymization. This paper provides an overview on the most important and well-researched approaches and discusses open research problems in this area, with the goal to act as a starting point for further investigation.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know