Advanced extractive electrometallurgy
Springer Handbooks, ISSN: 2522-8706, Page: 801-834
2017
- 3Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
This chapter starts with a brief introduction of current technologies for metal extraction via chemical and electrochemical means. A focus is given to recent research and development of new methods for titanium extraction. The chapter is then devoted to describing the principle and methodology of the more recently proposed Fray–Farthing–Chen (FFCFray–Farthing–Chen (FFC)) Cambridge process, which is a molten salt-assisted solid-state electrochemical reduction process. Typical examples are highlighted for application of the FFC Cambridge process for extraction of titanium, silicon and other metals, and also the production of various metal alloys, and the related development of fundamental understanding of the proposed in situ reduction routes from physical, chemical, and electrochemical points of view. The unique ability of the FFC Cambridge process for near-net-shape production of metallic components directly from their metal oxide precursors is also discussed.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85076116973&origin=inward; http://dx.doi.org/10.1007/978-3-662-46657-5_25; http://link.springer.com/10.1007/978-3-662-46657-5_25; https://dx.doi.org/10.1007/978-3-662-46657-5_25; https://link.springer.com/chapter/10.1007/978-3-662-46657-5_25
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know