Morphology and friction characterization of CV.D grown graphene on polycrystalline nickel
Lecture Notes in Mechanical Engineering, ISSN: 2195-4364, Vol: 12, Page: 195-204
2014
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures7
- Readers7
Book Chapter Description
Nanoscale friction properties of graphene produced by Mechanical Exfoliation (ME) of graphite crystal and grown by CVD have been studied by Atomic Force Microscopy (AFM). In particular we have analyzed ME graphene deposited on SiO (300 nm oxide) with respect to CVD graphene grown on polycrystalline Ni. We use the AFM in Friction Force Mode (FFM) with force resolution in the nano-newton range and lateral resolution in the nanometer scale. The detailed morphology of the samples, that may strongly influence the friction response at these length scales, has been analyzed by Raman spectroscopy and SEM imaging. We confirm that on ME graphene on SiO friction force decreases film thickness (i.e. increasing the effective number of layers that compose the film). Moreover we verify that the same behavior appears for graphene grown by CVD on polycrystalline Ni substrate indicating that this characteristic is a specific mechanical properties of a few layer film.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84950308613&origin=inward; http://dx.doi.org/10.1007/978-81-322-1656-8_17; https://link.springer.com/10.1007/978-81-322-1656-8_17; https://dx.doi.org/10.1007/978-81-322-1656-8_17; https://link.springer.com/chapter/10.1007/978-81-322-1656-8_17
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know