Graph theoretical invariants of chemical and biological systems: Development and applications
Springer Proceedings in Mathematics and Statistics, ISSN: 2194-1017, Vol: 146, Page: 141-148
2015
- 1Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Chemical graph theory has been extensively applied in the characterization of structure in many areas of science, chemistry and biology in particular. Numerical graph invariants ofmolecules or topological indices have been used in the characterization of structure, discrimination of pathological structures like isospectral graphs, prediction of property/ bioactivity of molecules for new drug discovery and environment protection as well as quantification of intermolecular similarity. More recently, methods of discrete mathematics have found applications in the characterization of complex biological objects like DNA/ RNA/ protein sequences and proteomics maps. This chapter reviews the latest results in applications of discrete mathematics, graph theory in particular, to chemical and biological systems.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84951778825&origin=inward; http://dx.doi.org/10.1007/978-81-322-2547-8_12; https://link.springer.com/10.1007/978-81-322-2547-8_12; https://dx.doi.org/10.1007/978-81-322-2547-8_12; https://link.springer.com/chapter/10.1007/978-81-322-2547-8_12
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know