The common developmental origin of eyespots and parafocal elements and a new model mechanism for color pattern formation
Diversity and Evolution of Butterfly Wing Patterns: An Integrative Approach, Page: 3-19
2017
- 22Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
The border ocelli and adjacent parafocal elements are among the most diverse and finely detailed features of butterfly wing patterns. The border ocelli can be circular, elliptical, and heart-shaped or can develop as dots, arcs, or short lines. Parafocal elements are typically shaped like smooth arcs but are also often "V," "W," and "M" shaped. The fusion of a border ocellus with its adjacent parafocal element is a common response to temperature shock and treatment with chemicals such as heparin and tungstate ions. Here I develop a new mathematical model for the formation of border ocelli and parafocal elements. The models are a reactiondiffusion model based on the well-established gradient-threshold mechanisms in embryonic development. The model uses a simple biochemical reaction sequence that is initiated at the wing veins and from there spreads across the field in the manner of a grass-fire. Unlike Turing-style models, this model is insensitive to the size of the field. Like real developmental systems, the model does not have a steady state, but the pattern is "read out" at a point in development, in response to an independent developmental signal such as a pulse of ecdysone secretion, which is known to regulate color pattern in butterflies. The grass-fire model reproduces the sequence of Distal-less expression that determines the position of eyespot foci and also shows how a border ocellus and its neighboring parafocal element can arise from such a single focus. The grass-fire model shows that the apparent fusion of ocellus and parafocal element is probably due to a premature termination of the normal process that separates the two and supports the hypothesis that the parafocal element is the distal band of the border symmetry system.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85036562762&origin=inward; http://dx.doi.org/10.1007/978-981-10-4956-9_1; http://link.springer.com/10.1007/978-981-10-4956-9_1; https://doi.org/10.1007%2F978-981-10-4956-9_1; https://dx.doi.org/10.1007/978-981-10-4956-9_1; https://link.springer.com/chapter/10.1007/978-981-10-4956-9_1
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know