Grain Boundary Feature and Its Effect on Mechanical Property of Ni 690 Alloy Layer Produced by GTAW
Transactions on Intelligent Welding Manufacturing, ISSN: 2520-8527, Page: 131-144
2018
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Book Chapter Description
Ni690 alloy surfacing layers were fabricated by gas tungsten arc welding (GTAW) with two different heat inputs, namely, large heat input (LHI) and small heat input (SHI). The high temperature performance of the surfacing layer was evaluated by employing Gleeble 3500 thermal/mechanical simulator. It is found that the ultimate tensile strength (UTS) of the LHI samples was higher than that of the SHI samples after reheat thermal cycles, regardless of the reheating temperature. The EBSD result shows that the proportion of high angle grain boundaries (GBs, >15°) in the LHI sample was obviously higher than that in the SHI sample. And more MC particles were found to precipitate at the high angle GBs. The relations among UTS, GB angle distribution and MC precipitations were analyzed. Moreover, the fracture modes were characterized by optical microscope (OM) and scanning electron microscope (SEM). The fracture mode was ductile fracture with deep dimples at 700 °C. While it changed to brittle intergranular fracture at 900 °C. As the temperature was enhanced to 1050 °C, the fracture returned to transgranular mode, with shallow dimples.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85127977819&origin=inward; http://dx.doi.org/10.1007/978-981-10-8330-3_8; http://link.springer.com/10.1007/978-981-10-8330-3_8; http://link.springer.com/content/pdf/10.1007/978-981-10-8330-3_8; https://dx.doi.org/10.1007/978-981-10-8330-3_8; https://link.springer.com/chapter/10.1007/978-981-10-8330-3_8
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know