Phytopathogen Biomass as inducer of antifungal compounds by Trichoderma asperellum under solid-state fermentation
Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms: Discovery and Applications, Page: 113-124
2019
- 8Citations
- 29Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
The main objective of the present study was to evaluate the phytopathogen biomass of Phytophthora capsici and Colletotrichum gloeosporioides as inducers of antifungal metabolites from Trichoderma asperellum. The experiment was carried out through a solid-state fermentation using corncob as support/substrate. Water, ethanol, and toluene were used to recover the antifungal metabolites. The strain of P. capsici was inhibited by the metabolites recovered from all extracts; however C. gloeosporioides resist them and develop a normal growth. The bioactive extracts were fractioned using Amberlite XAD16®, and each fraction was analyzed by LC-ESI-MS. LC-ESI-MS analysis showed two major compounds; an unknown compound (1) was detected as [M + H] (m/z 478) while dihydroxybergamotene (2) as [M + H] (m/z 260). In addition, other four compounds were detected: viridepyronone (3), koninginin D (4), acetyltetrahydroxyanthraquinone (5), and virone or gliotoxin (6). The results suggest that the biomass of P. capsici worked as an inducer of antibiotic compounds in T. asperellum.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85079406382&origin=inward; http://dx.doi.org/10.1007/978-981-13-5862-3_6; http://link.springer.com/10.1007/978-981-13-5862-3_6; http://link.springer.com/content/pdf/10.1007/978-981-13-5862-3_6; https://dx.doi.org/10.1007/978-981-13-5862-3_6; https://link.springer.com/chapter/10.1007/978-981-13-5862-3_6
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know