ATR-FTIR Spectroscopy and Its Relevance to Probe the Molecular-Level Interactions Between Amino Acids and Metal-Oxide Nanoparticles at Solid/Aqueous Interface
Springer Proceedings in Physics, ISSN: 1867-4941, Vol: 236, Page: 3-21
2019
- 4Citations
- 23Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Amino acids play an important role in the stabilization process of nanoparticles in aqueous solution. The nano–bio combination received considerable attention in various nanoscale applications such as chemical and biological sensing, imaging, biotechnology, medicines, etc. Considering the importance of the nano–bio mimicking system, in the present study we have focused on the structural behavior and the interaction of three amino acids, namely, L-Leucine, L-Cysteine, and L-Serine in the presence of metal-oxide nanoparticles and its impact on bulk water structure. We have employed attenuated total reflectance Fourier-transform infrared (ATR-FTIR) vibrational spectroscopy to probe the structural signatures of the molecular system in the aqueous solution. From the IR spectral features, it is found that the vibrational signatures of the individual amino acids are very sensitive to the number of molecules present in the aqueous bulk solution. However, there is no change in water structure observed with the variation of the amino acid concentrations. Surprisingly, the combination of oxide nanoparticles and the amino acids has a significant impact on the OH-stretching and bending regions of the bulk water for the case of L-Leucine and L-Cysteine. In presence of oxide nanoparticles, it is observed that there is a significant enhancement in the IR absorption intensity with the appearance of new spectral features of amino acids which was not noticed for the case of amino acids in the pristine aqueous environment. However, there is no enhancement in the intensity observed for the case of L-Serine except the spectral features in the fingerprint region.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85076149241&origin=inward; http://dx.doi.org/10.1007/978-981-15-0202-6_1; http://link.springer.com/10.1007/978-981-15-0202-6_1; http://link.springer.com/content/pdf/10.1007/978-981-15-0202-6_1; https://doi.org/10.1007%2F978-981-15-0202-6_1; https://dx.doi.org/10.1007/978-981-15-0202-6_1; https://link.springer.com/chapter/10.1007/978-981-15-0202-6_1
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know