Future Transitions to a Renewable Stationary Energy Sector: Implications of the Future Ecological Footprint and Land Use
Agroecological Footprints Management for Sustainable Food System, Page: 155-178
2020
- 5Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
We investigate the development of stationary energy policy for the national and sub-national ecological footprint. Three carbon emission mitigation scenarios relating to the electricity sector (two different fuel mix scenarios and the rate of technological uptake) are explored. We find that the effectiveness of sub-national policy varies with global uncertainty. To be robust, policy to reduce carbon emissions from the stationary energy sector must be successful irrespective of which future eventuates and/or must be highly adaptable and responsive to different futures. We investigate the impact of emission reduction policy on other parts of the ecological footprint—energy land. Many low carbon energy production methods require large areas of land, and this exacerbates current land use competition, particularly with respect to agricultural land. We find that holistic policy development will need to identify land uses which can operate synergistically with land required for renewable energy to mitigate ecological footprint expansion as renewable energy increases. Our case study using Australia and four of its states provides a framework applicable elsewhere in the world to increase the resilience of the energy sector and agriculture.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85141408663&origin=inward; http://dx.doi.org/10.1007/978-981-15-9496-0_5; http://link.springer.com/10.1007/978-981-15-9496-0_5; https://dx.doi.org/10.1007/978-981-15-9496-0_5; https://link.springer.com/chapter/10.1007/978-981-15-9496-0_5
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know