Data-Based Automatic Covid-19 Rumors Detection in Social Networks
Smart Innovation, Systems and Technologies, ISSN: 2190-3026, Vol: 237, Page: 815-827
2022
- 1Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Social media is one of the largest sources of propagating information; however, it is also a home ground for rumors and misinformation. The recent extraordinary event in 2019, the COVID-19 global pandemic, has spurred a web of misinformation due to its sudden rise and global widespread. False rumors can be very dangerous; therefore, there is a need to tackle the problem of detecting and mitigating false rumors. In this paper, we propose a framework to automatically detect rumor on the individual and network level. We analyzed a large dataset to evaluate different machine learning models. We discovered how all our methods used contributed positively to the precision score but at the expense of higher runtime. The results contributed greatly to the classification of individual tweets as the dataset for the classification task was updated continuously, thereby increasing the number of training examples hourly.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85116914816&origin=inward; http://dx.doi.org/10.1007/978-981-16-3637-0_57; https://link.springer.com/10.1007/978-981-16-3637-0_57; https://dx.doi.org/10.1007/978-981-16-3637-0_57; https://link.springer.com/chapter/10.1007/978-981-16-3637-0_57
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know