PlumX Metrics
Embed PlumX Metrics

2Be3-Net: Combining 2D and 3D Convolutional Neural Networks for 3D PET Scans Predictions

Lecture Notes in Electrical Engineering, ISSN: 1876-1119, Vol: 784 LNEE, Page: 263-271
2022
  • 0
    Citations
  • 0
    Usage
  • 2
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Conference Paper Description

Radiomics - high-dimensional features extracted from clinical images - is the main approach used to develop predictive models based on 3D Positron Emission Tomography (PET) scans of patients suffering from cancer. Radiomics extraction relies on an accurate segmentation of the tumoral region, which is a time consuming task subject to inter-observer variability. On the other hand, data driven approaches such as deep convolutional neural networks (CNN) struggle to achieve great performances on PET images due to the absence of available large PET datasets combined to the size of 3D networks. In this paper, we assemble several public datasets to create a PET dataset large of 2800 scans and propose a deep learning architecture named “2Be3-Net” associating a 2D feature extractor to a 3D CNN predictor. First, we take advantage of a 2D pre-trained model to extract feature maps out of 2D PET slices. Then we apply a 3D CNN on top of the concatenation of the previously extracted feature maps to compute patient-wise predictions. Experiments suggest that 2Be3-Net has an improved ability to exploit spatial information compared to 2D or 3D-only CNN solutions. We also evaluate our network on the prediction of clinical outcomes of head-and-neck cancer. The proposed pipeline outperforms PET radiomics approaches on the prediction of loco-regional recurrences and overall survival. Innovative deep learning architectures combining a pre-trained network with a 3D CNN could therefore be a great alternative to traditional CNN and radiomics approaches while empowering small and medium sized datasets.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know