A Summary of User Profile Research Based on Clustering Algorithm
Lecture Notes in Operations Research, ISSN: 2731-0418, Vol: Part F3781, Page: 758-769
2022
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Book Chapter Description
Clustering algorithm is applicable to calculate and analyze the potential characteristics of users’ data. The results of clustering can analyze the features of user profile, digitize them and construct a new user profile, which is an important basis for achieving accurate marketing and service to users and improving the experience of users in various fields at present. The article mainly provides an overview of the definition of user profile and classical clustering algorithms, summarizes the application of clustering algorithms in user profile, sorts out the advantages and disadvantages of the algorithm in the application, and puts forward some current problems of clustering algorithms applied to user profile, and prospects the future research directions. The relevant review in this paper can provide help for the subsequent research, which is related to user profile based on clustering algorithm.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85212387382&origin=inward; http://dx.doi.org/10.1007/978-981-16-8656-6_67; https://link.springer.com/10.1007/978-981-16-8656-6_67; https://dx.doi.org/10.1007/978-981-16-8656-6_67; https://link.springer.com/chapter/10.1007/978-981-16-8656-6_67
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know