Vaccines and Immunoinformatics for Vaccine Design
Advances in Experimental Medicine and Biology, ISSN: 2214-8019, Vol: 1368, Page: 95-110
2022
- 10Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- 10
- CrossRef3
- Captures10
- Readers10
- 10
Book Chapter Description
The host immune system recognizes and responds to the selective antigens or epitopes (immunome) of the intruding pathogen over an entire organism. The immune response so generated is ample to confer the desired immunity and protection to the host. This led to the conception of immunome-derived vaccines that exploit selective genome-derived antigens or epitopes from the pathogen’s immunome and not its entire genome or proteome. These are designed to elicit the required immune response and confer protection against future invasions by the same pathogen. Immunoinformatics through its epitope mapping tools allows direct selection of antigens from a pathogen’s genome or proteome, which is critical for the generation of an effective vaccine. This paved way for novel vaccine design strategies based on the mapped epitopes for translational applications that includes prophylactic, therapeutic, and personalized vaccines. In this chapter, various Immunoinformatics tools for epitope mapping are presented along with their applications. The methodology for immunoinformatics-assisted vaccine design is also outlined.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85130864032&origin=inward; http://dx.doi.org/10.1007/978-981-16-8969-7_5; http://www.ncbi.nlm.nih.gov/pubmed/35594022; https://link.springer.com/10.1007/978-981-16-8969-7_5; https://dx.doi.org/10.1007/978-981-16-8969-7_5; https://link.springer.com/chapter/10.1007/978-981-16-8969-7_5
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know