Passivity-Based Control of Tidal Turbine Based PMSG Using Interconnection and Damping Assignment Approach
Lecture Notes in Electrical Engineering, ISSN: 1876-1119, Vol: 893 LNEE, Page: 505-514
2022
- 3Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
Conference Paper Description
Marine current conversion systems with permanent magnet synchronous generator (PMSG) have several advantages over the renewable energies and is gradually replacing it in the industry. Non-linear equations describe the dynamics of the PMSG. It is subject to unknown external disturbances (load), and its parameters are variable in time. All these constraints make the control task complex. It requires non-linear controls that compensate for non-linearities, external disturbances, and parametric variations. This paper investigates an interconnection and damping assignment passivity-based control (IDA-PBC) h for the PMSG using the model represented in the dq-frame. Inherent advantages of the IDA-PBC method are that the non-linear properties are not canceled but compensated in a damped way. The proposed PBC is responsible for designing the system's desired dynamic. The efficiency of the suggested technique is investigated numerically using MATLAB/Simulink software.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85129872388&origin=inward; http://dx.doi.org/10.1007/978-981-19-1742-4_43; https://link.springer.com/10.1007/978-981-19-1742-4_43; https://dx.doi.org/10.1007/978-981-19-1742-4_43; https://link.springer.com/chapter/10.1007/978-981-19-1742-4_43
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know