Facial Expression Recognition Using Hyper-Complex Wavelet Scattering and Machine Learning Techniques
Lecture Notes in Networks and Systems, ISSN: 2367-3389, Vol: 428, Page: 411-421
2023
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Conference Paper Description
Human emotion recognition is an active research topic in analysing the emotional state of humans over the past few decades. It is still a challenging task in artificial intelligence and human–computer interaction due to its high intra-class variation. Facial emotion analysis achieved more appreciation in academic and commercial potential challenges mainly in the field of behaviour prediction and recommendation systems. This paper proposes a novel scattering approach for recognizing facial dynamics using image sequences. Initially, we extract the temporal information from the facial frame by applying a saliency map and hyper-complex Fourier transform (HFT). Later the extracted high-level features are fed to the scattering transform method and machine learning algorithms to classify the seven emotions from the MUG dataset. The performance of proposed wavelet scattering network was evaluated on four different machine learning algorithms and achieved a high rate of recognition accuracy in all classes. In the experimental results, K-NN exhibits the proposed architecture’s effectiveness with an accuracy rate of 97% for the MUG dataset, 95.7% for SVM, 93.7% for decision tree and 91.2% naive Bayes, respectively.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85140490187&origin=inward; http://dx.doi.org/10.1007/978-981-19-2225-1_37; https://link.springer.com/10.1007/978-981-19-2225-1_37; https://dx.doi.org/10.1007/978-981-19-2225-1_37; https://link.springer.com/chapter/10.1007/978-981-19-2225-1_37
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know