Drug Repurposing in Cancer
Drug Repurposing for Emerging Infectious Diseases and Cancer, Page: 159-179
2023
- 2Citations
- 19Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
The discovery of drug compounds has a long history in drug repurposing, notably by fortuitous findings. It has taken a new path in the creation of novel therapeutics based on existent or authorized drugs in recent years. Importantly, our knowledge of cancer biology and the related cancer hallmarks is growing. This, together with repurposing studies that use modern bioinformatics and comprehensive screening of the complete pharmacopeia, should lead to the discovery of novel medicines and targets. Furthermore, the usage of non-oncology pharmaceuticals, which make up most of our treatments, has the potential to speed up drug repurposing even further. We looked at both phenotypic-based and target-based methods of medication repurposing as well as described and assessed old non-oncology medications as prospective candidates for drug repurposing based on a broad knowledge of these principles and associated investigations of drug repurposing over the previous decade. Some of these medications successfully regulate at least one characteristic of cancer, whereas the others have a broad anticancer activity by regulating several targets through different signaling pathways, which is often brought on by various simultaneous signaling pathways. Furthermore, the emergence of computerized databases of disease gene targets, functional readouts, and clinical data encompassing inter-individual genetic variants and toxicities has allowed an alternative “big data” approach to grow at an unheard-of rate during the past decade. Here, we review the sources that are now on hand and speculate on significant upside possibilities.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85160495414&origin=inward; http://dx.doi.org/10.1007/978-981-19-5399-6_8; https://link.springer.com/10.1007/978-981-19-5399-6_8; https://dx.doi.org/10.1007/978-981-19-5399-6_8; https://link.springer.com/chapter/10.1007/978-981-19-5399-6_8
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know