Dynamic Response of Simply Supported Beam Carrying Rotating Unbalance and a Damper with CuO Nanolubricants
Lecture Notes in Mechanical Engineering, ISSN: 2195-4364, Page: 637-644
2023
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
This work investigates the dynamic response of simply supported beam subjected to harmonic excitation by means of rotating unbalance. Passive viscous damper plays crucial role in controlling vibration response of system operating at resonance. Viscous damper containing CuO nanolubricants is used for suppressing the vibrations. Copper oxide (CuO) nanolubricants are prepared by two-stage process, which involves addition of CuO nanoparticles to lubricants and mixing by ultrasonication process for better dispersion stability. Orthogonal array technique is adopted for deciding set of experiments. Experiments are conducted at various speeds and nanoparticle concentrations. RMS acceleration values of the vibrating system are recorded for each experiment. Dynamic performance of the system is compared for various combinations of plain oil, nanolubricants and speed. Results show improved dynamic performance by use of CuO nanolubricants.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85163970215&origin=inward; http://dx.doi.org/10.1007/978-981-19-7709-1_64; https://link.springer.com/10.1007/978-981-19-7709-1_64; https://dx.doi.org/10.1007/978-981-19-7709-1_64; https://link.springer.com/chapter/10.1007/978-981-19-7709-1_64
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know