Microbes: The Next-Generation Bioenergy Producers
Waste to Energy: Prospects and Applications, Page: 29-60
2021
- 1Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
An amalgamation of eternal-increasing energy outlay and global warming concerns has created an international imperative to seek alternative energy that is renewable and can be produced sustainably. Methodical studies have consistently shown that liquid fuels through microbial conversion derived from plant biomass are one of the excellent alternatives if it is lucrative means of commercial production. Yield, titre, and competent reconstruction of feedstock into fuel are the three most imperative factors for engineering microbes that can produce biofuels on an industrial scale. The role of microbial population is indispensable not only in the conversion of plant biomass into liquid fuels but also gaining momentum in the conversion of organic material into other forms of renewable energy sources: bioethanol, biodiesel, biohydrogen, and bioelectricity. Hence, contemporary research demands to understand the metabolomics of these microbial populations and ways and means to transform them to utilize organic waste into renewable energy source effectively. Recombinant technology combined with genomics and proteomics helps to understand and modulate the microbial communities to a better yielding strain. This review will discuss the role of different microbes in bioenergy production and highlight the techniques involved in their transformation, pros and cons of these microbial bioenergy producers in fulfilling the future energy demand.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85151219214&origin=inward; http://dx.doi.org/10.1007/978-981-33-4347-4_2; http://link.springer.com/10.1007/978-981-33-4347-4_2; http://link.springer.com/content/pdf/10.1007/978-981-33-4347-4_2; https://dx.doi.org/10.1007/978-981-33-4347-4_2; https://link.springer.com/chapter/10.1007/978-981-33-4347-4_2
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know