Challenges and Materials in Artificial Organ Manufacturing
Lecture Notes in Mechanical Engineering, ISSN: 2195-4364, Page: 637-653
2021
- 1Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Additive manufacturing (AM), is also known as rapid prototyping, is considered as a revolution in field of manufacturing and fabrications and boosted the development in biomedical fabrication. The 3D printing technique is mostly utilized in the field of medical for the manufacturing of medical equipment and surgical equipment, especially 3D biomedical printing which means 3D printing of substance which are biologically compatible to human body, blood and cells in the field of tissue fabrications. The main aim of tissue fabrications and engineering is to produce the artificial organ which is functional and viable. To fulfill this objective, investigation of various manufacturing techniques and materials is required. The process is difficult as it includes multiple aspects of human physiology, like types of multiple cell culturing, vasculature, nerve innervation, and interactions with nearby cells. This paper objective is to find the suitable material, is difficult task and, need in-depth focus on why it is difficult & what are the factors influencing the negative role of effective utilization of 3D printing tissue engineering. Also, this paper focuses on comparative study of materials in economic perspective human organ manufacturing. At the end, the conclusion elaborates about the applications and challenges of additive manufacturing in medical field and the alternative materials for organ tissue manufacturing.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85106429033&origin=inward; http://dx.doi.org/10.1007/978-981-33-6029-7_59; https://link.springer.com/10.1007/978-981-33-6029-7_59; https://link.springer.com/content/pdf/10.1007/978-981-33-6029-7_59; https://dx.doi.org/10.1007/978-981-33-6029-7_59; https://link.springer.com/chapter/10.1007/978-981-33-6029-7_59
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know