Research on Capacity Configuration of Wind Storage Hydrogen Production Plant Considering “Source-Load” Double Disturbance
Lecture Notes in Electrical Engineering, ISSN: 1876-1119, Vol: 1159 LNEE, Page: 254-263
2024
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Conference Paper Description
Hydrogen production from wind power is an important method to solve the problem of wind abandonment and improve the utilization rate of wind power. However, the “source” turbulence caused by unstable wind speed and the “load” turbulence caused by sudden load change will adversely affect the stable operation of power-to-hydrogen system and the grid connection stability of wind farm. To solve this problem, a synergistic control strategy between supercapacitor and power-to-hydrogen system is proposed. The strategy is based on the Ensemble empirical mode decomposition algorithm. By making the supercapacitor stabilize the high-frequency component in the turbulence of “source-load”, the stability of power-to-hydrogen system is improved, and an optimal allocation method of supercapacitor capacity suitable for the control strategy is proposed. Finally, the effectiveness of the strategy is verified by Simulink simulation.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85188819407&origin=inward; http://dx.doi.org/10.1007/978-981-97-0877-2_27; https://link.springer.com/10.1007/978-981-97-0877-2_27; https://dx.doi.org/10.1007/978-981-97-0877-2_27; https://link.springer.com/chapter/10.1007/978-981-97-0877-2_27
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know