PlumX Metrics
Embed PlumX Metrics

Dynamic Annual Solstice Patterns and Urban Morphology: Bioclimatic Lessons for In-situ Adaptation Measures within the Warming City of Ankara, Türkiye

Urban Sustainability, ISSN: 2731-6491, Vol: Part F3688, Page: 189-214
2023
  • 0
    Citations
  • 0
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Book Chapter Description

Within the existing literature, there already is a wealthy initiation into how different types of local adaptation measures can help urban fabrics respond to increasing temperatures as a result of climate change. Arguably propelled by the climate change adaptation agenda, different typologies of thermal sensitive measures are becoming continually more organised and solidified to improve the bioclimatic responsiveness of the consolidated urban fabric. Along with this growing body of knowledge, is the recognition that the in-situ efficacy of different measure typologies in counteracting increasing urban heat levels depends on two interrelated factors, these being: (1) how well the dynamic microclimatic conditions are assessed and understood; and (2) how well characteristics such as urban morphology are understood. Following this line of reasoning, in order to be utilised to their full potential, and moreover avoid symptoms of mal-adaptation, thermal sensitive adaptation measures must account for the unremitting and symbiotic cause-and-effect between these factors. Today, it is widely known that mean radiant temperature (MRT) is one of the most significant factors upon human thermophysiological thresholds. In addition, it is furthermore a particularly dynamic variable as a result of the continuously shifting annual solstice. Accordingly, MRT must be understood as a variable which modifies not just on a diurnal bases, but in addition one which oscillates throughout the different months and seasons of the year. Depending on the time of year, as dictated by the Urban Energy Balance, radiation fluxes interact with the static structures of the urban fabric through different seasonal energy exchange patterns/quantities. Such an understanding calls upon the approach of both yearly and different seasonal analytical scopes to better comprehend the symbiotic relationship of urban morphology and solstice patterns. It permits a finer understanding of the impacts associated to crucial climatic variables that play a significant role in human thermal comfort. Invariably, this consequently includes the fundamental role of in-situ dynamic radiation fluxes that are undeniably dictated by modifying yearly/seasonal solstice patterns. Grippingly, and unlike encircling air temperature, MRT can more easily be manipulated through different measure typologies within the urban fabric, and in addition, presents means to alter the cause-and-effect relationship with other encircling microclimatic variables. Within this book chapter, a structured reflection will be undertaken for Ankara, Türkiye—and how an innovative methodical case study presents bioclimatic lessons pertinent to the crucial role of in-situ dynamic radiation fluxes within a densifying and warming urban fabric in an era of growing climate change.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know